

PURE SUBSTANCES AND MIXTURES

Substance

= form of a matter consisting of a great number of elementary particles: atoms, ions and

1. Match the pictures of particles below with substances: glucose, salt, hydrogen, helium

Systems of substances

- = all substances which fill a certain space.
- open the exchange of both particles and energy is possible
- closed only the exchange of is possible
- insulated neither the exchange of nor that of is possible
- homogeneous the same properties everywhere
- heterogeneous different properties, consist of two or more homogeneous areas (phases)
 - 2. Give examples for each of the above type of systems.

Pure substance

= a substance consisting of particles (atoms, molecules) of one kind (H_2O , NaCl, O_2 , Fe). Substances have constant properties – boiling point, melting point, density, etc.

Mixture

- = a system consisting of particles of different kinds
 - mixtures (solutions) the size of particles < 10⁻⁹ m
 - colloids the size of particles is m
 - heterogeneous mixtures the size of particles > 10⁻⁷ m

homogeneous ←		colloids		\rightarrow		
10 ⁻¹⁰	10 ⁻⁹	10 ⁻⁸	10 ⁻⁷	10 ⁻⁶	(m)	

Heterogeneous mixtures:

Name of a mixture	Component of a mixture		Examples
	dispersing	dispersed	Examples
		Solid	
	Liquid	Liquid	
		Gas	
	Gas	Liquid	
	- 540	Solid	

Nume of a mixture	dispersing	dispersed	Examples
		Solid	
	Liquid	Liquid	
		Gas	
	Gas	Liquid	
	Guo	Solid	
3. Classify the follo	owing substances as ρι	ıre substances or mixtur	es:
salt water		sodium hydroxide	Э
helium		muddy water	
air free of dust		hydrochloric acid	1
steel		cobalt (II) chlorid	e
Separating mixtures			
·	na words into the text al	bout separating techniqu	es
Evaporation	ig worde into the text ax	sout coparating toomiqu	
•	oe separated from a sol	ution by evaporating the	solvent. (NaCl from water)
Filtering	•	, , ,	,
An insoluble solid subst	ance may be separated	from a liquid or a gas us	sing a filter
particles remain on the	filter while	or passe	s through the tiny holes in the
filter. Solid particles = re	esidue, liquid =	This method is	based on the different
of particles.			
http://www.youtube.com	n/watch?v=uET2jYuHID	M&feature=related%20D	<u>Decanting</u>
Decanting			
An insoluble solid can b	e separated from	by carefully pou	uring the liquid off leaving the
solid behind. It is quicke	er than filtering, but not a	as good. It is based on th	ne different
of the substances.			
Separating funnel			
	two immiscible liquids () e.g. oi	I and water. It is poured into a
	• •	, •	ap is opened and the heavier
	•	•	reaches the bottom

Centrifuging

Containers with test tubes containing sample of suspension or emulsion are spun around. The heavier/lighter particles are flung to the bottom of the test tube. This is based on the same principle as force.

Distillation

Salt solutions or solutions	of two or more liquids may be separated using distillation. It	is based on
different	of substances mixed.	
The salt solution in the fla	sk is heated. The water part boils and becomes	The stear
passes into the	where it is turned back to water which then drips in	to the collecting
beaker.		
The same principle is use	ed for separating two liquids, e.g. ethanol and water. The one	with the lower
boiling point () evaporates sooner and goes to a condenser.	

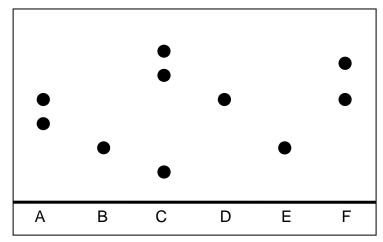
5. Add labels to the parts of the distillation apparatus: DISTILLATE, STOPPER,
THERMOMETER, DELIVERY TUBE, CONDENSER, ROUND BOTTOM FLASK, BURNER,

MIXTURE, COLD WATER, WATER FROM THE TAP, WATER TO THE SINK, COLLECTING FLASK.

However for better separating a so called **fractional distillation** is used. Both liquids evaporate when heated and pass into a fractionating (long tube packed with small glass beads, which provide a large surface area for the gases to condense and evaporate from). Only reaches the top of the column and condenses in the condenser. http://www.youtube.com/watch?v=jAZOKMm-h_I&NR=1

6. Find a mistake in the text about sublimation.

Sublimation


It is a process during which a substance changes to a Very few substances sublimate, e.g. iodine, chlorine and naphthalene. A mixture of iodine and sand may be separated by gently heating it so that iodine turns into a gas leaving the sand behind. If a cold surface is held over the heated mixture, the iodine will turn back to a solid.

http://www.youtube.com/watch?v=E-fs9OwE9Y0

Chromatography

This technique was originally discovered when scientists were extracting coloured dyes from plants. A coloured extract is made from a mixture of different compounds. As the solvent soaks up the paper, the different coloured compounds follow it at different, so they gradually become separate. Chromatography serves not only for separating compounds but also for them. http://www.youtube.com/watch?v=HVq5DMY2pJM&feature=related

- 7. In the picture below there is a chromatogram of six substances A-F. Use it to state:
 - a. Which of the substances A-F are mixtures and which are pure substances?
 - b. Which of the substances A-F are identical?
 - c. Which of the substances A, B, C, E, F contain the substance D?

	ting echnique based on different of the n used for separating substances from biological n	·	
	using liquid carbon dioxide as a	The other substa	nces causing the
pleasa	nt smell and taste of coffee are	in CO ₂ and stay in the	coffee.
ě	8. What kind of mixtures are the following mixtu	res and how would you	ı separate them?
	a. mixture of oil and water		
	b. crude oil		
	c. muddy water		
	d. dust and air		
	e. sugar and water		
	f. a biological material containing pigments		
	g. dyes forming the black ink of a marker		
Atom :	BASIC CHEMISTRY TERMS = a basic unit of a substance structure characteri		
• ato	omic number Z = number of protons in the nucle	eus ₈ O, ₁₃ Al	
• ma	ass number A = number of protons + number of	neutrons ¹⁶ O, ²⁷ AI	
• ne	$\mathbf{utron} \ \mathbf{number} \ \mathbf{N} = \mathbf{number} \ \mathbf{of} \ \mathbf{neutrons} \ \mathbf{in} \ \mathbf{the} \ \mathbf{nu}$	cleus	
	N = A - Z		
Moleci	ule = a particle made of two or more atoms		
Eleme	nt = a substance made of atoms with the same r	number of protons	
•	atoms are not combined, e.g		ecule, e.g
Nuclid	e = an element made of atoms with the same ma	ass number, e.g. $^{16}_{8}$ O,	²⁷ A1,
Isotop	es = atoms of the same element with different m	asses, e.g. ${}_{1}^{1}H$, ${}_{1}^{2}H$, ${}_{1}^{3}$	Н
	have the same number of electrons \Rightarrow the same		

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

have different masses \Rightarrow different properties.

9. Fill in the following table:

Symbol of an atom	³⁴ ₁₆ S	¹⁴ ₆ C	²³ Na		Ga
Number of p				15	
Number of n				16	40

Relative atomic mass A_r/RAM

The real masses of atoms are very small numbers, e.g. $m(Na) = 3.83 \times 10^{-23} \, \text{g}$.

Because of the need to compare the masses of atoms **carbon-12** (= nuclide ${}^{12}_{6}$ C) was chosen as a standard. (As it is solid, cheap, easily transported and stored, common element.)

 $m_u = \frac{m^{12}C}{12}$ = atomic mass constant, defined as one twelfth of the mass of an atom of carbon ¹²C m_u = average mass of a nucleon (a particle in the nucleus) = **1.66** ×**10**⁻²⁴ g

 $A_r = \frac{m(X)}{m_{tt}} =$ atomic relative mass = how many times an atom is heavier than one nucleon

Atomic relative mass of pure isotopes equals the mass number, i.e. the number of nucleons, e.g.

$$A_{r}(^{35}CI) = \dots, A_{r}(^{23}Na) = \dots$$

A, has no unit.

- 10. Calculate the real mass of ¹²C.
- 11. Calculate the real mass of ²⁰⁸Pb and of ¹²⁰Sn.
- 12. Calculate the relative atomic mass of an element knowing that the mass of its atom is 9.13×10^{-23} g.
- 13. An atom of an unknown element has the mass of 5.146×10^{-23} g. What is this element?

Naturally occurring elements consist of a mixture of isotopes, e.g. chlorine consists of 25% of ³⁷Cl and 75% of ³⁵Cl. Its average relative atomic mass may be calculated as follows:

$$A_{r}(CI) = \dots \times 37 + \dots \times 35 = \dots$$

Elements with one isotope only are e.g.: B, F, Na, P,...

Atomic relative masses of all elements are found in books of data.

- 14. Calculate the average atomic relative mass for:
 - a. Ga: 60% ⁶⁹Ga + 40% ⁷¹Ga

c. S:
$$95\%^{32}$$
S + $0.8\%^{33}$ S + $4.2\%^{34}$ S

d.
$$Sr: 0.56\%$$
 ⁸⁴ $Sr + 9.9\%$ ⁸⁶ $Sr + 7\%$ ⁸⁷ $Sr + 82.6\%$ ⁸⁸ Sr

Relative molecular mass / Relative formula mass M_r

$$M_r$$
 is defined as: $M_r(A_xB_y) = \frac{m(A_xB_y)}{m_{tt}}$

It may be calculated using relative atomic masses of individual elements:

$$M_r(A_xB_y) = x \times A_r(A) + y \times A_r(B)$$

It does not have any unit.

15. Calculate the relative formula mass for the following substances:

√2 CH₃CHO

 Na_2SO_3 $Fe_2(SO_4)_3$

 $Ca(NO_3)_2$ $ZnSO_4 \cdot 7H_2O$

- 16. Calculate the number of molecules of water iron(II) sulphate crystallizes with, knowing that the M_r of hydrated iron(II) sulphate is 277.85.
- 17. Calculate the mass of one molecule of:
 - a. propane

c. ethanoic acid

b. sulphur trioxide

d. phosphorus pentachloride

Amount of substance = number of moles n

unit = mole (mol), 1 mole = number of atoms in 12 g of carbon-12 = 6.022×10^{23}

$$n = \frac{N}{N_A}$$
, N... number of particles, N_A ... Avogadro constant = 6.022 × 10²³ mol⁻¹

1 mol of any substance contains particles.

- 18. Calculate the number of moles of:
 - a. 1.5055×10^{24} phosphorus atoms
 - b. 1.2044×10^{23} chlorine molecules

- c. 3.011×10^{24} iron atoms
- d. 2.4088×10^{27} sodium atoms
- 19. What is the number of moles of oxygen atoms in 1.8066×10^{23} oxygen molecules?
- 20. What is the number of moles of phosphorus molecules in the sample of white phosphorus P₄ containing 20 moles of atoms? How many molecules are there?
- 21. What is the number of moles of:
 - a. oxygen atoms in 1.2044×10^{25} water molecules?
 - b. hydrogen atoms in 3.011×10^{23} water molecules?
- 22. How many molecules are there in:
 - a. 5 moles of methane?
 - b. 3.5 moles of chlorine?
 - c. 0.01 moles of ammonia?

Molar mass M

= the mass of 1 mole of a substance, it is defined as $M = \frac{m}{n}$

The values of molar mass in $g \cdot mol^{-1}$ for elements and compounds are the same as the values of their A_r or M_r .

- 23. What is the molar mass of:
 - a. silver?
 - b. ethane?
 - c. sulphuric acid?
 - d. oxygen?

- e. ozone?
- f. calcium sulphate?
- g. calcium phosphate?
- h. silver sulphide?
- 24. What is the number of moles in:
 - a. 8 g of helium?
 - b. 46 g of sodium?
 - c. 10 g of nitric acid?
 - d. 7.5 g of sulphur dioxide?

- e. 12 g of hydrogen peroxide?
- f. 0.4 g of sulphuric acid?
- g. 3.2 g of hydrogen fluoride?
- h. 1.6 g of chromium?

- 25. What is the mass of:
 - a. 0.1 mol of hydrogen sulphide?
- e. 5 mol of silicon oxide?

- b. 2.5 mol of ethanol?
- c. 1.83 mol of sodium chloride?
- d. 3 mol of calcium hydroxide?
- 10 mol of magnesium carbonate
- g. 0.02 mol of nitric acid?
- h. 0.06 mol of hydrogen sulphide?

- 26. What is the mass of:
 - a. 4.2154×10^{25} molecules of ammonia?
 - b. 2×10^{24} molecules of bromine?
 - c. 3.7×10^{23} atoms of zinc?
 - d. 6.2×10^{24} molecules of ethanol?
- e. 10²⁶ molecules of methane?
- f. 4.2×10^{24} atoms of fluorine
- g. 8.5×10^{22} molecules of propane?
- h. 0.2×10^{23} atoms of sulphur?
- 27. How many atoms are there in:
 - a. 6.4 g of gold?
 - b. 52 g of magnesium?
 - c. 12 g of iodine?
 - d. 100 g of water?

- e. 0.4 g of oxygen?
- f. 1 kg of iron?
- g. 3.8 g of hydrogen bromide?
- h. 50 g of nitric acid?
- 28. How many ions are there in 40 g of calcium fluoride?

Molar volume V_m

Avogadro's law: 1 mole of any gas occupies the volume of 22.4 dm³ at standard temperature and pressure. s.t.p.= 0° C and 101kPa. $V_m = 22.4 \text{ dm}^3 \cdot \text{mol}^{-1}$

(At the room temperature 25°C the gases occupy a volume of 24.4 dm³.)

1 mol \approx 22.4 dm³ \approx 6.023 \times 10²³ particles

$$V_m = \frac{V}{n}$$

- 29. What is the volume of the following gases at s.t.p.?
 - a. 2 mol of fluorine

 - b. 1.8 mol of sulphur dioxide
 - c. 5 g of carbon dioxide
 - d. 0.01 g of argon

- e. 10 mol of ammonia
- f. 4.8 mol of propane
- g. 1.5 g of neon
- h. 0.3 g of methane
- 30. What is the number of moles of the following gases at s.t.p.?
 - a. 4 dm³ of helium

- c. 50 dm³ of ethane
- b. 250 cm³ of carbon monoxide
- d. 0.1 dm³ of neon
- 31. What is the mass of the following gases at s.t.p.?
 - a. 7.5 dm³ of chlorine

e. 9.4 dm³ of oxygen

b. 12 dm³ of butane

c. 460 cm³ of hydrogen iodide

d. 50 cm³ of propane

f. 82 dm³ of hydrogen fluoride

g. 5 m³ of nitrogen

h. 0.01 dm³ of sulphur dioxide

32. What is the number of particles in the following gases at s.t.p.?

a. molecules in 38 dm³ of nitrogen dioxide

b. atoms in 500 cm³ of chlorine

c. atoms in 15 dm³ of dinitrogen monoxide

d. molecules in 1 m³ of hydrogen

e. atoms in 1 m³ of hydrogen

f. atoms in 4 dm³ of neon

33. What is the volume of the following gases at standard conditions?

a. 9.034×10^{23} molecules of H₂

b. 4.63×10^{24} molecules of ethane

c. 2.89×10^{25} atoms of krypton

d. 1.05×10^{24} molecules of nitrogen

e. 5.82×10^{23} atoms of neon

f. 7.91×10^{24} molecules of butane

Further questions:

1. An atom of an unknown element has a mass of 1.79×10^{-22} g. What element is it? (Ag)

2. What is the real mass of:

a. one atom of bromine

 $(1.326 \times 10^{-22} g)$

b. one atom of vanadium

 $(8.456 \times 10^{-23} g)$

c. one molecule of formic acid (HCOOH)

 $(7.636 \times 10^{-23} g)$

d. one molecule of sulphur hexafluoride (SF_6)?

 $(2.42 \times 10^{-22} \text{ g})$

3. Air consists of 21% of oxygen ($M_r(O_2) = 32$) and 78% of nitrogen ($M_r(N_2) = 28$). Neglect all the other gases forming 1% of the air and calculate the average relative mass of air.

(28.56)

4. $Na_2B_4O_7$ crystallizes with several water molecules. Find its amount knowing that the relative formula mass of hydrated $Na_2B_4O_7$ is 381.24. (10)

5. Gaseous nitrogen at standard conditions has the mass of 56 g. Calculate its number of moles, volume, number of molecules, number of atoms and density.

 $(2 \text{ mol}, 44.8 \text{ dm}^3, 1.20 \times 10^{24} \text{ molecules}, 2.4 \times 10^{24} \text{ atoms}, 0.00125 \text{ g} \cdot \text{cm}^{-3})$

6. How many atoms are there in 4 g of helium and what is its volume at s.t.p.?

 $(6.022 \times 10^{23} \text{ atoms}, 22.4 \text{ dm}^3)$

7. Calculate the mass and the volume at s.t.p. of 2.7×10^{22} molecules of carbon dioxide.

 $(1.97 \, \text{g}, \, 1 \, \text{dm}^3)$

8. How many atoms are there in 56 g of sodium?

 $(14.7 \times 10^{23} \text{ atoms})$

9. What is heavier: 1 dm³ of CO₂ or 1 dm³ of SO₃?

10. What is the volume of 0.25 moles of CO₂ at standard conditions?

 (5.6 dm^3)

11. How many molecules are contained in hexane C_6H_{14} , if its volume is 50 cm³ and the density is 0.66 g·cm⁻³? (2.3 × 10²³ molecules)

12. Calculate the volume of 5.4×10^{23} molecules of benzene $C_6H_6(I)$, if the density of benzene is $0.88 \text{ g}\cdot\text{cm}^{-3}$? (79.8 cm³)

Summary of the quantities and their units

Summary of the quantities and their units					
Quantity	Symbol	Definition formula	Unit		
Relative atomic mass					
	N				
Avogadro's constant					
			Mol		
		$=\frac{m}{n}$			
			dm ³ , m ³ , ml, l		

SI units

Basic units: metre (m), kilogram (kg), second (s), amper (A), kelvin (K), mol (mol)

Units used in chemistry: $1 g = 10^{-3} kg$

$$0^{\circ}$$
C = 273.15 K

$$1 \text{ dm}^3 = 10^{-3} \text{ m}^3, 1 \text{ cm}^3 = 10^{-6} \text{ m}^3$$