

CARBONYL COMPOUNDS

= substances containing the carbonyl group

Aldehydes have the C=O group at the end of the chain, the aldehydic group is then

Naming of aldehydes:

In the systematic name there is a suffix after the stem indicating the number of carbon atoms **including** the one for the carbonyl group.

1. Fill in the table

НСНО			octanal
	ethanal		pentanal
C ₃ H ₇ CHO		C ₆ H ₁₃ CHO	
C ₂ H ₅ CHO			hexanal

<u>Ketones</u> have the oxygen on a non-terminal carbon atom in the chain, keto group is Systematic name: suffix after a stem indicating the **overall** number of carbon atoms + the number indicating the position of the carbonyl group in the chain

2. Fill in the table

CH ₃ -CO-CH ₃			heptan-3-one
	butanone	$C_3H_7COC_2H_5$	
CH ₃ COCH ₂ CH ₂ CH ₃			hexan-2-one
	pentan-3-one	CH ₃ COC ₅ H ₁₁	

3. Name the following carbonyl compounds:

a. $CH_3CH_2CH_2CH_2CHO$ b. $CH_3CH(CH_3)COCH_3$ c. $CH_3CH(CH_3)CHO$ CH_3CH_2CHCHO CH_2CH_2CHO f. HCHO d. e. e.

4. Write down the structural formulae for the following compounds:

a. cyclohexanone b. 3-methylbutanal c. 2,2-dimethylpropanal

d. 3-phenylbutan-2-one

e. phenylpropanone

d. 4-phenylpentanal

5. Of the compounds in 1 and 2, which are structural isomers?

TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

The nature of the - CO group

Physical properties

6. Estimate the type and the extent of interactive forces between C_2H_6 ($M_R = 30$), CH_3OH ($M_R = 30$) and HCHO ($M_R = 30$) and put these compounds in order with respect to increasing boiling point. C_2H_6

СН₃ОН

нсно

Methanal is a gas, other important carbonyl compounds are

Early members are soluble in water due to between hydrogen from water and oxygen from the carboxylic group.

As the length of the non-polar chain increases the influence of C=O group on the properties

Chemical properties

The charge on the carbon atom makes carbonyl compounds attractive towards

1. addition A....

The readiness to undergo A_N decreases with increasing number of carbon atoms, ketones are generally less reactive than aldehydes. This is caused by alkyl groups that tend to electrons to the carbon atom of the carbonyl group. The positive charge on it is cancelled somwhat.

7. Put HCHO, CH_3COCH_3 and CH_3CHO in order with respect to decreasing reactivity.

Benzyldehyde C_6H_5CHO is even less reactive because of the delocalization of the positive charge over the benzene ring.

a. reaction with HCN \rightarrow hydroxynitriles

b. reactions with alcohols \rightarrow hemiacetals

c. reactions with hydrogensulphites \rightarrow sulphites

- 8. Give the name and structural formula of the organic product formed in each of the following reactions:
 - a. ethanal + HCN \rightarrow
 - b. pentan-2-one + KCN \rightarrow
 - c. methanal + $HSO_3^- \rightarrow$
 - d. butanal + $CH_3OH \rightarrow$

2. Redox reactions

• reduction (hydrogenation)

Aldehydes are reduced to alcohols, ketones are reduced to alcohols. The most common reducing agents: $LiAIH_4$ (lithium tetrahydridoaluminate), $NaBH_4$ (sodium borohydride) or H_2 in the presence of a nickel catalyst.

oxidation

Tollens' reaction

aldehyde + Tollens reagent (AgNO₃ + NH₃(aq)) \rightarrow carboxylic acid + Ag

Fehling's reaction

aldehyde + Fehling reagent (CuSO₄ in alkaline conditions) \rightarrow carboxylic acid + Cu₂O

- 9. From the following compounds select those that will react with
 - a. Tollens' reagent
 - b. Fehling's solution ethanal, propanone, phenylethanone, propanal, methanal
- 10. Give the names and formulae of the organic products formed in each of the following reactions:
 - a. $(CH_3)_2CHCHO + Tollens' reagent \rightarrow$
 - b. 3-methylbutan-2-one + LiAlH₄ \rightarrow

CH2CHO + NaBH₄

C.

Cannizaro's reaction

3. Reactions on the α -carbon

a. halogenation $\rightarrow \alpha$ - halogenocompounds

 $\rm CH_3COCH_3 + \rm Cl_2 \rightarrow$

- b. haloform reaction, takes place in alkaline conditions with an excess of halogen. lodoform reactions are used for testing for the presence of -COCH₃ group.
 - 1. R-COCH₃ + $3I_2 \rightarrow$
 - 2. R-COCl₃ + OH⁻ \rightarrow yellow precipitate of iodoform

This reaction is positive also with -CHOH-CH₃ group because it is oxidised by iodine to

.....

11. By drawing the structures of the following compounds, state which will give a positive iodoform test:

- a. benzaldehyde
 b. propanal
 c. 2-methylpropan-2-ol
 d. butanone
 f. phenylethanone
 f. propan-2-ol
- c. ethanol

4. Addition – elimination reaction

- a. reactions with hydroxylamine \rightarrow oximes $R_1R_2C=O + NH_2OH \rightarrow \rightarrow H_2O + oxime$ b. reactions with hydrazine \rightarrow hydrazones
 - $R_1R_2C=O + NH_2NH_2 \rightarrow \qquad \rightarrow H_2O + \qquad \qquad hydrazone$

Tautomerism

enol form keto form (more stable)

Manufacture and preparation

- oxidation of alcohols aldehydes: primary alcohols ketones: secondary alcohols
- 12. Give the names and formulae of the alcohols which can be oxidised to give the following carbonyl compounds:
 - c. butanal f. cyclohexanone i. pentan-2-one
 - d. 3-methylbutan-2-one g. benzaldehyde j. phenylethanone
 - e. 2-methylpropanal h. 3-phenylbutanal
- 2. acetaldehyde is made by hydration of ethyne
- 3. acetone is produced by oxidation of cumene

Uses of carbonyl compounds

Methanal (formaldehyde)

Ethanal

Propanone

Benzaldehyde

Cyclohexanone