





# **HYDROGEN**

= the first element of the periodic table. Although it is situated in the first group of the periodic table it is not an alkali metal.

### **Experiment 1:** The preparation and the properties of hydrogen

Pour a small amount of dilute hydrochloric acid into a test tube and add there a piece of zinc. Observe the reaction for some time and then place a burning splint on the rim of the test tube. Conclusion:

# **Experiment 2:** The properties of hydrogen

| The hydrogen prepared in Experiment 1 is passed to water containing some detergent. The bub | bles |
|---------------------------------------------------------------------------------------------|------|
| made this way rise because hydrogen isthan air. The bubbles may be ignited with             | а    |
| burning splint.                                                                             |      |
| Conclusion: Hydrogen isthan air and that's why it was once used in                          |      |

# **Experiment 3:** The reduction of copper(II) oxide by hydrogen

Put a small amount of CuO into a glass tube connected by a rubber hose with the apparatus described in Experiment 1. As the hydrogen released passes through the glass tube, heat it.

Conclusion:

### Atom of hydrogen

- 1. Describe the three isotopes of hydrogen
- 2. What is the electron configuration of hydrogen?
- 3. What are the most common oxidation numbers of hydrogen?
- 4. What type of bond is there in the hydrogen molecule?

#### Occurrence:

Physical properties = colour, odour, state, density, solubility in water







| Chemical | properties |
|----------|------------|
|----------|------------|

= oxidising/reducing agent, reacts with: non-metals:  $H_2 + F_2 \rightarrow$  (explosively)

 $H_2 + CI_2 \rightarrow$ 

 $H_2 + O_2 \rightarrow$ 

 $H_2 + N_2 \xrightarrow{Fe,t,p}$ 

metal oxides: CuO +  $H_2 \rightarrow$ 

alkali metals: H<sub>2</sub> + Na →

# Compounds

**hydrides** = ..... compounds of hydrogen

• ....., contain H (..... anion)

= compounds of hydrogen and ....., e.g. CaH<sub>2</sub>

white ..... (state) with high/low melting points.

They react with water to form hydrogen: NaH + H<sub>2</sub>O → ...... + H<sub>2</sub>

When they undergo electrolysis hydrogen is formed at the anode/cathode.

- covalent: (with .....), e.g. H<sub>2</sub>S
- 5. What is the structure and state of covalent hydrides?
  - intersticial (with metals from the centre of the PT) H<sub>2</sub> molecules fill spaces inside the metal crystal
- 6. Which of the substances from the paragraph "Chemical properties" are ionic hydrides and which are covalent hydrides?

acids, hydroxides, hydrogensalts, almost all organic substances

# Manufacture

- 7. Give three ways of manufacturing hydrogen:
  - •
  - \_
  - •

### **Laboratory preparation**

- 8. Give three ways of preparing  $H_2$  in the laboratory.
  - •







| •                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------|
| Uses:                                                                                                                           |
| • H <sub>2</sub> is transported and stored in metal cylinders with a stripe.                                                    |
| <u>OXYGEN</u>                                                                                                                   |
| = an element of the Group XVI. (VI.A) of the periodic table                                                                     |
| Atom of oxygen                                                                                                                  |
| <ol> <li>Write down the electron configuration of oxygen. Use the box diagram to show the valence<br/>electrons.</li> </ol>     |
| The <b>electronegativity</b> of oxygen is, it is the second most electronegative element (just after)                           |
| <ol> <li>Estimate the most common oxidation number of oxygen in its compounds and give a<br/>reason for your answer.</li> </ol> |
| Other oxidation numbers: – in peroxides $O_2^{2-}$ ( $H_2O_2$ ) – in oxygen difluoride $OF_2$                                   |
| When an oxygen atom combines with atoms of other elements it may achieve a stable noble gas configuration:                      |
| When it accepts/loses one/two electrons forming an oxide ion. (CaO)                                                             |
| When it forms two or one covalent bond.(H <sub>2</sub> O, CO <sub>2</sub> )                                                     |

# Occurrence

Oxygen is the most abundant element in the Earth's crust. Free oxygen forms ......% of the atmosphere. It is bonded to compounds – minerals, rocks, water organic compounds. It is essential for life.

When it forms one single/double bond and accepts/loses one electron. (NaOH)







# **Properties**

Oxygen occurs as two gaseous allotropes,  $O_2$  and  $O_3$ .

3. HW: Use the internet to find the meaning of the word "allotrope".

| Dioxygen (oxygen) O <sub>2</sub>                                                                                 |
|------------------------------------------------------------------------------------------------------------------|
| 4. Draw the Lewis (electron) formula of dioxygen molecule:                                                       |
| By far the more common allotrope, odour, taste, colour, state:                                                   |
| which condenses to a pale blue liquid at -183°C. Slightly lighter/heavier than air,                              |
| soluble/insoluble in water .                                                                                     |
| Molecular oxygen is/is not very reactive. Its reactions are endothermic/exothermic. It acts as a                 |
| strong agent. The reactions may be very fast, e.g or very                                                        |
| slow, e.g                                                                                                        |
| <ul> <li>combustion – compounds containing C, H, resp. O (hydrocarbons, carbohydrates) are oxidised to</li></ul> |
| and proceeds at temperature and in the presence of natural                                                       |
| catalysts – $C_6H_{12}O_6 + 6 O_2 \rightarrow \dots$                                                             |
| Oxidation of both metals and non-metals →                                                                        |
| Preparation  • Thermal decomposition of :                                                                        |
| <ul> <li>Catalytic decomposition of H<sub>2</sub>O<sub>2</sub> →</li> </ul>                                      |
| Electrolysis of water, oxygen is made at the anode/cathode:                                                      |
| Manufacture                                                                                                      |
| Fractional distillation of liquid air                                                                            |
| Electrolysis of water                                                                                            |
| Oxygen is naturally made also during photosynthesis: 6 $CO_2$ + 6 $H_2O \rightarrow$                             |
| Uses                                                                                                             |
| In the steel industry to convert into steel                                                                      |
| In and metals (together with acetylene)                                                                          |
| In space rockets as an of hydrogen                                                                               |
| In medicine                                                                                                      |







Oxygen is transported and stored in metal cylinders with a ..... stripe.

# **Experiment 1**: The preparation of oxygen

Put a spoonful of potassium permanganate into a test tube and heat it. After some time place a glowing splint on the rim of the test tube.

Conclusion:

# **Experiment 2:** Properties of oxygen

Pour hydrogen peroxide solution into two conical flasks. Place a glowing splint in both of them. Then add one spoonful of manganese(IV) oxide to one of them and again place a glowing splint there. Explain your observation.

Conclusion:

### E

| Experiment 3: Burning non-metals in oxygen                                                                                                                                                      |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| First put a piece of ignited carbon and then a piece of ignited sulphur into a flask filled with oxygen.                                                                                        |  |  |  |  |  |
| Close the flask in order to avoid an escape of any gas. After the reaction add water and prove the                                                                                              |  |  |  |  |  |
| presence of an acid using blue litmus paper.                                                                                                                                                    |  |  |  |  |  |
| Conclusion:                                                                                                                                                                                     |  |  |  |  |  |
| Trioxygen (                                                                                                                                                                                     |  |  |  |  |  |
| <ul><li>6. Explain the term "ozone hole". What is it caused by?</li><li>7. Explain the term "ground-level ozone" How is it formed? What are its effects on human, plants and animals?</li></ul> |  |  |  |  |  |
| 8. State another circumstance leading to the formation of ozone.                                                                                                                                |  |  |  |  |  |

oxygen:..... of water and fruits and vegetables.

Ozone has high oxidising abilities as it decomposes to molecular and atomic (highly reactive)







**Oxides** = binary compounds of oxygen, oxidation number of oxygen is ....... Classification of oxides:

| Classification of oxides:                                                                                   |
|-------------------------------------------------------------------------------------------------------------|
| According to the structure:                                                                                 |
| Molecular oxides- simple molecules (usually oxides)                                                         |
| Atomic oxides – giant covalent structures                                                                   |
| Ionic oxides – ionic crystals (usually oxides of and elements)                                              |
| 9. Classify CaO, CO <sub>2</sub> and SiO <sub>2</sub> according to their structures.                        |
| According to acid – base properties                                                                         |
| Acidic – usually metal/non-metal oxides: either react with water to form                                    |
| (forming oxides): $SO_2 + H_2O \rightarrow \dots$                                                           |
| or react with hydroxide solutions to make SiO $_2$ + NaOH $\rightarrow$ +                                   |
| Basic – metal/non-metal oxides either react with water to form                                              |
| (forming oxides) CaO + $H_2O \rightarrow \dots$                                                             |
| or react withto form salt: MgO + H₂SO₄→+                                                                    |
| <ul> <li>Amphoteric oxides - react both with acids and bases, (ZnO, Al<sub>2</sub>O<sub>3</sub>)</li> </ul> |
| <ul> <li>Neutral oxides - react neither with acids nor with bases (N<sub>2</sub>O, CO)</li> </ul>           |
| 10. Classify MgO, $CO_2$ and $SO_2$ according to their acid – base properties.                              |
|                                                                                                             |
| WATER H₂O                                                                                                   |
| Occurrence:                                                                                                 |
| Water is the most common compound, it occurs in the three forms of matter:,                                 |
| water, Liquid water covers of the Earth's surface, it is a part of living organisms;                        |
| the human body contains 60% of water. In nature it never occurs in a pure form but it contains              |
| dissolved substances which change the properties of water.                                                  |
| Water is also bonded in the crystals of some compounds () in the form of water of                           |
| crystallization, eg. $CuSO_4 \cdot \dots H_2O$ ( vitriol = skalice).                                        |
| 1. Draw the shape of a water molecule                                                                       |
|                                                                                                             |
| Properties:                                                                                                 |
| Isolated molecules of water may be found in water vapour only. The molecules in liquid water are            |
| attached to one another through This is a reason why water ha                                               |
| unique properties: a relatively high/low boiling and melting point, high/low surface tension, maximum       |
| density at°C                                                                                                |
| It is a <i>polar/non-polar</i> solvent.                                                                     |







- 2. Explain why the water molecule is polar.
- 3. Draw two molecules of water connected by hydrogen bonding.

#### **Chemical properties**

Water is a very stable compound, it may be a product of a reaction or it may act as a reactant or a reacting environment. All important reactions of water will be mentioned later on.

- 4. Explain the terms "hygroscopic" and "hydrophobic substances".
- 5. Describe the water cycle in nature.
- 6. Find some information about heavy water.

# Hydrogen peroxide H<sub>2</sub>O<sub>2</sub>

H<sub>2</sub>O<sub>2</sub> is a pale blue liquid with physical properties similar to those of water (m.p. -0.4°C, b.p. 150°C).

7. Suggest a possible structural formula of  $H_2O_2$ .

- 8. Write down the equation for the decomposition of  $H_2O_2$ .
- 9. For what purpose is this decomposition used in everyday life?
- 10. Explain the bleaching and disinfectant properties of  $H_2O_2$  knowing that the principle is the same as in oxidising abilities of ozone.

Elephant toothpaste: <a href="http://www.youtube.com/watch?v=XKli-QGHb40">http://www.youtube.com/watch?v=XKli-QGHb40</a>

Bombardier beetle: http://www.youtube.com/watch?v=nFUIEuNeWw4&feature=related

In most reactions it acts as a strong oxidising agent:

11. Write down the half equation for the reduction of a peroxide ion.







### **SOLUTIONS**

Chemical reactions occur in aqueous solutions mostly.

When a solute dissolves in a solvent two extreme cases may happen.

- 1. The particles of the solute **disperse** among the particles of the solvent. The solute may be retrieved from the solution unchanged. E.g. NaCl, O<sub>2</sub>, ... in water.
- 2. The solute and the solvent **react** together. The solute is changed. E.g. dissolving metals in acids.

Solubility of a solute in a certain solvent may be expressed as: mass of the solute/ mass of the solvent or: amount of the solute/ volume of the solution (concentration of the solute in the saturated solution)

# Quantities expressing the amount of a solute in a solution

- 1. **Mass percentage w** of a solute in a solution, it is used mostly for the aqueous solutions of acids, hydroxides and salts
  - $w(A) = \frac{m(A)}{m}$ ; m(A) ... the mass of the solute A, m... the mass of the solution
  - 1. A solution was made by dissolving 50 g of NaCl in 200 g of water. Calculate the mass percentage of NaCl in this solution.
  - 2. How many grams of NaCl and what volume of water is needed for the preparation of 600 g of 5% solution?
- **2.** Volume percentage  $\varphi$ , it is used for gaseous mixtures or mixtures of miscible liquids.

$$\varphi(A) = \frac{V(A)}{V}$$
;  $V(A)$  ... the volume of the solute,  $V$ ... the volume of the solution

- 3. 30 cm<sup>3</sup> of ethanol was mixed with 70 cm<sup>3</sup> of water. Calculate the percentage by volume of ethanol in this solution.
- 4. 50 cm³ of a mixture of gases contains: 2.2 cm³ of CO<sub>2</sub>, 16.7 cm³ of CO and the rest is nitrogen. Express the composition of the mixture using volume percentages.







# **3.** Concentration c (molarity, molar concentration)

- $c = \frac{n}{V}$ ;  $n \dots$  amount of the solute,  $V \dots$  volume of the solution (in dm<sup>3</sup>), unit = mol·dm<sup>-3</sup>
- 5. Calculate the concentration of 300 cm<sup>3</sup> solution of potassium hydroxide containing 10.5 g KOH.
- 6. What mass of potassium nitrate(III) is contained in 200 cm<sup>3</sup> of 2M solution?
- 7. What mass of soda ash containing 96% of Na<sub>2</sub>CO<sub>3</sub> is needed for the preparation of 250 g of 8% solution?
- 8. What mass of 3% solution is made from 45 g of sodium nitrate?
- 9. What is the mass of pure NaOH and water needed for the preparation of 3 litres of 16% solution?  $(\rho(16\% \text{ NaOH}) = 1,175 \text{ g} \cdot \text{cm}^{-3})$
- 10. How many percent of pure HNO<sub>3</sub> does nitric acid ( $\rho = 1.36 \text{ g} \cdot \text{cm}^{-3}$ ) contain if it contains 0.8 kg of HNO<sub>3</sub> in 1 dm<sup>3</sup>?
- 11. We need to prepare 5 dm<sup>3</sup> of 10% CuSO<sub>4</sub> solution. What mass of CuSO<sub>4</sub> · 5H<sub>2</sub>O do we need?  $(\rho = 1.07 \text{ g} \cdot \text{cm}^{-3})$
- 12. What is the mass of pure  $H_2SO_4$  contained in 1 dm<sup>3</sup> of 31.4%  $H_2SO_4$  if 1 dm<sup>3</sup> of this acid has the mass of 1230 g?
- 13. The solubility of KNO<sub>3</sub> in water at 40°C is 64 g of KNO<sub>3</sub> in 100 g of water. What is the mass percentage of saturated solution?
- 14. What is the solubility of NaCl in water (per 100 g of water) at  $50^{\circ}$ C if the saturated solution has w = 27%?
- 15. When all the water is evaporated from 50 g of NaOH solution we get 1g of NaOH. What was the mass percentage?
- 16. What mass of calcium hydroxide is contained in 50 g of 10% solution?
- 17. Calculate the volume of ethanol contained in 50 cm<sup>3</sup> of Label 5 Scotch Whisky (40%).
- 18. Calculate the molar concentration of NaCl if 1000 cm<sup>3</sup> of the solution contains 29.2 g NaCl.
- 19. What is the concentration of 250 ml solution prepared by dissolving 7.3 g NaCl in water?
- 20. Calculate what volume of 0.1 M FeCl<sub>3</sub> solution may be prepared from 648.84 g of FeCl<sub>3</sub> in water.
- 21. What mass of NaCl do we need for the preparation of 4000 cm<sup>3</sup> of 0.1 M solution?
- 22. What mass of hydrogen chloride is contained in 2 dm<sup>3</sup> of 0.2M solution of HCl?
- 23. What mass of calcium hydroxide is contained in 100 cm<sup>3</sup> of its 0.1M solution?
- 24. What volume of 0.05M CaCl<sub>2</sub> solution contains 166.5 g of pure CaCl<sub>2</sub>?
- 25. 100 ml of KOH solution contains 14 g of KOH. What is its molarity?
- 26. Calculate the mass percentage of nitric acid in its 5.62M solution ( $\rho$ = 1.18 g·cm<sup>-3</sup>).
- 27. What is the molarity of 10% HCl solution if its density is 1.047 g·cm<sup>-3</sup>.







- 28. Calculate the molarity of 5% sodium carbonate solution if its density is 1.05 g·cm<sup>-3</sup>.
- 29. What is the concentration of NaCl solution containing 29.22 g of NaCl in 1000 cm<sup>3</sup> of the solution?
- 30. What volume (in ml) of 0.1M KMnO<sub>4</sub> solution may be prepared from 55.313 g of KMnO<sub>4</sub>?
- 31. How many grams of potassium sulphate are needed for the preparation of 1000 ml of 0.25 M solution?
- 32. How many grams of sulphuric acid are contained in 5000 ml of 0.25 M solution?
- 33. Calculate the volume of ammonia (at s.t.p.) needed for the preparation of 1300 ml of 0.2M solution.

# Answers:

| 1. | 20%                        | 10. 58.82%             | 18. 0.5M               | 27. 2.87M                 |
|----|----------------------------|------------------------|------------------------|---------------------------|
| 2. | 30 g, 570 ml               | 11. 836.88 g           | 19. 0.5M               | 28. 0.5M                  |
| 3. | 30%                        | 12. 386 g              | 20. 40 dm <sup>3</sup> | 29. 0.5M                  |
| 4. | 4.4%, 33.4%,62.2%          | 13. 39%                | 21. 23.38 g            | 30. 3500 ml               |
| 5. | 0.625 mol·dm <sup>-3</sup> | 14. 37 g               | 22. 14.6 g             | 31. 43.6 g                |
| 6. | 34 g                       | 15. 2%                 | 23. 0.741 g            | 32. 122.6 g               |
| 7. | 20.83 g                    | 16. 5 g                | 24. 30 dm <sup>3</sup> | 33. 5.824 dm <sup>3</sup> |
| 8. | 1500 g                     | 17. 20 cm <sup>3</sup> | 25. 2.5 M              |                           |
| 9. | 564 g                      |                        | 26. 30%                |                           |

# Mixing the solutions

There are two basic questions:

- What is the resulting mass percentage of a solution made by mixing two solutions of different mass percentages of a solute?
- How to mix two solutions of different mass percentages of a solute to get a certain value of resulting mass percentage?

Solution 1:  $m_1$   $w_1$   $m(A)_1 = m_1 \times w_1$ Solution 2:  $m_2$   $w_2$   $m(A)_2 = m_2 \times w_2$ 

Resulting solution:  $m_1 + m_2 w m(A) = m_1 \times w_1 + m_2 \times w_2$ 

 $w = \frac{m_1 \times w_1 + m_2 \times w_2}{m_1 + m_2} \dots$  mixing equation. The mixing equation may be used for solving both types

of questions.







- 1. 200 g of 5% solution of KCl is mixed with 300 g of 10% solution. What is the mass percentage of KCl in the resulting solution?
- 2. What is the mass percentage of a solution made by mixing 33 kg of 10% HCl and 7 kg of 60% HCl?

However, for solving the questions of the second type it is better to use the so called **cross rule**.

3. What is the mass of sodium hydroxide solution (w = 5%) needed for the preparation of 25% solution by mixing it with 22 g of 35% solution?

$$w_1$$
 5%  $m_1$   $m_1 : m_2 = m_1 = m_2$   $m_2$ 

4. 500 kg of 35.7% HCl was diluted by 8.5% HCl. 30% solution was made. What was the mass of 8.5% HCl added?

Both the mixing equation and the cross rule may be used also for the cases when a solution is diluted with a pure solvent (w = 0%) or when a pure solute (w = 100%) is added to a solution.

- 5. What mass of HCl (38%) must be diluted with water to get 190 g of 10% solution?
- 6. Use the cross rule to calculate how many parts of water and Na<sub>2</sub>SO<sub>4</sub> (by mass) you need to make 15% solution.
- 7. 400 g of 92% acid is mixed with 1200 g of 76% acid. What is the resulting mass percentage?
- 8. What is the mass percentage of a solution made by mixing 250 g of 20%, 450 g of 30% and 500 g of 80% solution?
- 9. 200 g of 60% solution is diluted with 100 g of water. What is the resulting mass percentage of this solution?
- 10. 600 g of 32% HCl must be diluted with 18% HCl so that we get 28% HCl. What mass of 18% HCl must be added?
- 11. 15 kg of 65% HNO3 must be diluted to 2% HNO3. What mass of water do we need?
- 12. 78% and 48% solutions must be mixed in a certain ratio so that we get 66% solution. What is this ratio?
- 13. 5% HCl and 2% HCl must be mixed so that we get 300 g of 3% HCl. What masses of 5% and 2% HCl do we need?







- 14. What mass of 5% ethanoic acid may be made from 50 g of 80% ethanoic acid?
- 15. What mass of water is needed for the preparation of 20% solution from 300 g of 40% solution?
- 16. 250 g of 36% HCl must be mixed with 5.5% HCl so that we get 25% HCl. What mass of 5.5% HCl do we need?
- 17. What mass of 40% NaOH solution must be diluted with water so that we get 2000 g of 25% NaOH?
- 18. How would you prepare 5 dm<sup>3</sup> of 10%  $H_2SO_4$  ( $\rho = 1.066 \text{ g} \cdot \text{cm}^{-3}$ ) using 92.2%  $H_2SO_4$ ?
- 19. How many cm<sup>3</sup> of 25% HCl ( $\rho = 1.127 \text{ g} \cdot \text{cm}^{-3}$ ) are needed to make 2 dm<sup>3</sup> of 5% HCl ( $\rho = 1.024 \text{ g} \cdot \text{cm}^{-3}$ )?
- 20. What mass of water is needed for the preparation of 6% NaOH solution from 300 g of 25% NaOH?
- 21. What volume of water must be added to 150 ml of 37.23% HCl ( $\rho$  = 1.19 g·cm<sup>-3</sup>) so that we get 23.82% HCl?
- 22.  $60\% H_2SO_4$  and  $12\% H_2SO_4$  are used to make  $30\% H_2SO_4$ . In what mass ratio must they be mixed?
- 23. 80% HNO<sub>3</sub> must be diluted with 10% HNO<sub>3</sub> so that we get 35%. How many parts of 80% and 10% HNO<sub>3</sub> do we need?
- 24.  $450 \text{ cm}^3$  of 96% ( $\rho = 1.841 \text{ g} \cdot \text{cm}^{-3}$ ),  $110 \text{ cm}^3$  of 65% ( $\rho = 1.568 \text{ g} \cdot \text{cm}^{-3}$ ) and  $220 \text{ cm}^3$  of 10%  $H_2SO_4$  ( $\rho = 1.069 \text{ g} \cdot \text{cm}^{-3}$ ) are mixed. What mass of water must be added to the mixture so that the resulting mass percentage is 15%?
- 25. What volume of 36% HCl ( $\rho$  = 1.18 g·cm<sup>-3</sup>) and what volume of water is needed for the preparation of 1000 ml of 10% solution ( $\rho$  = 1.05 g·cm<sup>-3</sup>) 247.2 ml

#### <u>Answers:</u>

| 1 | . 8%                                       | 7. | 80%                  | 13 | . 100 g and 200 g              | 19 | . 454 cm³                 |
|---|--------------------------------------------|----|----------------------|----|--------------------------------|----|---------------------------|
| 2 | . 18.75%                                   | 8. | 48.75%               | 14 | . 800 g                        | 20 | . 950 g                   |
| 3 | . 11 g                                     | 9. | 40%                  | 15 | . 300 g                        | 21 | . 100.5 ml                |
| 4 | . 132.56 kg                                | 10 | . 240 g              | 16 | . 141 g                        | 22 | . 3:5                     |
| 5 | . 50 g                                     | 11 | . 472.5 kg           | 17 | . 1250 g of NaOH and           | 23 | . 25 and 45               |
| 6 | . 3 parts K <sub>2</sub> SO <sub>4</sub> , | 12 | . 3 parts of 78% and |    | 750 g of water                 | 24 | . 4944 g                  |
|   | 17 parts H₂O                               |    | 2 parts of 48%       | 18 | . 4752 g H₂O + 578 g           | 25 | . 247.2 ml 10% HCl,       |
|   |                                            |    |                      |    | H <sub>2</sub> SO <sub>4</sub> |    | 708.3 ml H <sub>2</sub> O |